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Abstract

The expert system based on the backward propagation neural network (BPN) has been developed and
tested for diagnosing mass unbalance of rotational machines. The system adopts the acoustic signals
as input features. In order to minimize the distance and background noise effects, the so-called
d-normalization was introduced. The d-normalization is similar to the loudness in speech synthesis. By
utilizing the normalized power spectra together with the rectified statistic moments of higher order of the
acoustic signals, the system is found to be very successful. However, it was found that the system still could
not discriminate those faults near the natural frequencies. The main reason may stem from the system non-
linearities even though they are small.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Generally speaking, an expert system is a software package containing at least a knowledge
base, a reasoning unit and man–machine interfaces. Depending on the reasoning unit, there exist
many different types of expert systems. For example, Drake and Pan [1] use a neural network
system to monitor the transient responses for the coolant system of a machine tool. The report
showed that the fault classification ability was good in multi-fault monitoring with correct
classification rate of 100%. For long-term monitoring, they reported the correct classification rate
of 30%. In addition, a neural network-based expert system was applied to diagnose the defects of

ARTICLE IN PRESS

*Corresponding author. Tel.: +886-22771-2171-2023; fax: +886-2-2731-7191.

E-mail address: wlli@ntut.edu.tw (W. Li).

0022-460X/03/$ - see front matter r 2003 Elsevier Ltd. All rights reserved.

doi:10.1016/S0022-460X(03)00317-1



roller bearings [2–5]. They [3] reported that the system has the ability to identify different defects
with correct classification rate of 94%. For other review papers, one can refer to excellent papers
such as e.g., [6,7].

In fact, a diagnosis system is indeed a kind of pattern recognition. No matter which type of
expert system is chosen, one key factor that affects the system results is the sensors. The sensor
detects the physical changes of the machine or parts, and the signals are then transduced to and
stored in the computer for the expert system. Therefore, the quality that a sensor can attain surely
changes the results of an artificial neural network (ANN) system. Normally, sensors that are
directly mounted onto the machine are commonly used. This type of sensor includes, for example,
proximity probes which sense the displacement changes, and accelerometers which sense the
acceleration changes of an object. However, they need to be mounted directly on fixed parts.
Thus, such sensors may cause certain inconveniences especially for those machines that do not
provide appropriate locations for mounting such sensors. In addition, those sensors may be
contaminated and operators may not notice them. Even worse, one has no way of knowing a
priori the locations where good quality signals can be appropriately acquired so that sensors can
be mounted at the right places.

The alternative way may be to select sensors that do not need to be mounted on the part. In
practice, this type of sensor includes two categories. The first one is the laser sensor [8]. Although
laser sensors can be used to detect signals of high frequency, they are somewhat more expensive.
The second category may be the acoustic sensors or microphones. Unfortunately, the background
noise is often a big problem for this type of sensor.

The objective of the present report is to develop an expert system for a rotating machine. The
faults include mass unbalance, shaft-bow misalignment, and looseness, etc. In addition, the
acoustic signals are the major considerations for the ANN inputs. However, it has been shown [9]
that the latter two are not sensitive enough to the microphone sensor. They will not be included in
the present report. Readers may directly refer to Chiu [9] for further discussions.

2. The neural network

Clearly, certain malfunctions of rotary machines may be diagnosed through the vibrations of
the machine. However, it is not an easy task because there is no simple normal/malfunction
relationship. As a consequence, a computer-aided expert system like an ANN may be right answer
to this problem.

For an artificial expert system, reliability and applicability are the two most important factors
to be taken into consideration even at the first stage of development. However, the input signals
obtained from fields are always contaminated or incomplete. Therefore, the backward
propagation network (BPN) neural network model that has been applied and reported well in
industries is selected for the present investigation. And, its parameters and input features have to
be set and tested using the acoustic microphone as the input sensor. However, for comparison,
signals of proximity probes have also been added where they are necessary.

In general, the application of BPN algorithm, as shown in Fig. 1(a), involves the calculation of
the error between the network output vector and the target vector. Let the BPN have the input
vector x of length Nin; the network output vector y of length r; and the synaptic weight matrixW:
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Then a transfer function f maps x into y by

y ¼ f ðWTx� yÞ ¼ f ðvÞ; ð1Þ

where y is the bias that is used to mimic the threshold value of the axon, below which the neuron
would not respond, v the output net activity vector. For BPN with a supervised learning process,
there exist two distinct computation passes. The first one is referred to as the ‘forward pass’ in
which the synaptic weight matrix remains unchanged. In other words, the information inputs pass
forward to the output. On the other hand, the second pass is called the ‘backward pass’ where the
error is passing backwards starting from the outermost layer. Thus, through the recursive
computation for each neuron the weight matrix undergoes modifications. Or, let the (n þ 1)th
change of weight matrix be Wðn þ 1Þ: Then

Wðn þ 1Þ ¼WðnÞ þ DWðnÞ; ð2Þ

where DWðnÞ is the weight adjustment matrix obtained from the last change. And the correction
value of node from ith to jth is

DWjiðnÞ ¼ Z � djðnÞyiðnÞ þ aDWjiðn � 1Þ; ð3Þ

where Z; a and dj are the learning rate, the momentum constant [10] and the local gradient,
respectively. Since the sigmoid function is chosen as the transfer function, refer to Fig. 1(b), the
local gradient dj of the jth node and the output error vector e; which is the Euclidean distance of
the target vector T and the output vector v, are related by the expression

djðnÞ ¼ ejðnÞ � f 0ðvjðnÞÞ; ð4Þ

or [11]

dj ¼
yjðnÞ½1 � yjðnÞ	

P
k dkWkjðnÞ;

½TjðnÞ � yjðnÞ	yjðnÞ½1 � yjðnÞ	:

(
ð5Þ

The former of Eq. (5) is good for the non-output or hidden layers, while the latter for the
output layer, respectively. Besides, the subscripts of Wkj denote the weighting factor of the BPN
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Fig. 1. (a) Schematic diagram of the diagnosis system. (b) The output error of the BPN.
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from node j to k: Readers are referred to BPN books such as e.g., [11] for more details on
derivations.

On the other hand, the choice for the initial weights is one other crucial factor that affects the
convergence of the ANN. In general, the wrong starting weights can always delay the convergence
speed. For example, the possibility that the ANN converges to a local optimal, instead of the
global one, gets much higher in case excessively when large initial weights are given. That is
because the BPN may be saturated too quickly. In order to avoid this situation, the initial weights
were selected as uniform random real numbers in [�0.5, +0.5] for the current ANN.
Furthermore, the number of neurons of the hidden layer has been set to be NH ¼ ðNin þ rÞ=2;
where Nin is the number of feature inputs, r the number of output vectors or the dimension of y:

The other network parameters like the learning rate, momentum, number of hidden layers, the
number of nodes for the individual hidden layer, etc., are also important and have been discussed
by many researchers, e.g., [12]. However, for the present study, such network parameters are
simply picked in such a way that the BPN reasonably converges in the training process. For
example, to choose a value for the learning rate can be crucial and different algorithms with
different advantages are given in Ref. [12]. For the current case, the initial learning rate is simply
set to 3.0 and with decreasing rate of 95% to the minimum learning rate of 0.2 [9]. In addition, the
learning momentum is set with the same decreasing rate of 95% and minimum value as the
learning rate but a different initial momentum value of 0.95. These values are believed to be
reasonable and have been tested and verified before being put into the system.

The stop criterion of convergence for the network is set to the cumulative maximum error, emax;
smaller than 0.2%. The cumulative maximum error of N training samples is defined as follows

emax ¼
1

2N

XN

n¼1

jjy� Tjj
r

2

; ð6Þ

where y denotes the estimated output vector of the network and T the known target vector of the
training samples.

3. Input signals

All rotating machinery tends to generate periodic signals no matter whether it is in normal or
malfunction condition. The most common way to understand these signals is through its
vibrations and sound. Independent of the ways of signal they certainly relate to various physical
characteristics. On the other hand, these signals may be classified into two categories. Depending
on their representation, they can be either in the time or in the frequency domains. However, most
field engineers prefer to have their signals transformed into the latter [13]. That is, the detected
time-domain signals are transformed into frequency signals by using an FFT algorithm. Using
this frequency signal, as has been shown in Ref. [13], most malfunctions, namely, mass unbalance,
misalignment, looseness, and axis bent, etc., can be successfully diagnosed with the aid of the
ANN, if the signals used in it honestly represent the machine. For the signal treatments in the
frequency domain, readers are referred to [13] for detail.

However, any signal in the frequency domain has to be acquired from the time domain a priori.
And all directly acquired signals include as much noise error as information. As a consequence,
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the choice of signal representation must be as robust as possible. Here, ‘robust’ means ‘insensitive
to noise or other uncontrollable parameters.’ As indicated in many research reports, there exist
many choices for the signal representations. Among them, it has adopted the statistical moments
[13] as one of the input signals for the current ANN. That is, the nth moments of a random
variable X ðtÞ about an arbitrary point k are defined by [14,15]

E½ðx � kÞn	 ¼
Z

N

�N

ðx � kÞn � fX ðxÞ dx; ð7Þ

or

Mn ¼ E½ðx � kÞn	D
XN

i¼1

ðxi � kÞn � pðxiÞ; ð8Þ

in which E½�	 denotes the expectation, fX ðxÞ is the probability density function (PDF) of X ; N total
number of points. It is worth of note that Eq. (7) is obviously for a continuous random variable
while Eq. (8) is for a discrete one. In case the moments are calculated with respect to the first
moment or mean value, mX ; i.e., k ¼ mX ; the second statistical moment (n ¼ 2) is the well-known
variance of X or s2

X : In general, all higher moments normalized about mX are the central statistical
moments, i.e.,

mX ¼
1

N

XN

i¼1

xi: ð9Þ

Furthermore, the third and fourth moments are called the skewness and kurtosis coefficients,
respectively, after their physical meanings in PDF. That is, let SX and kX be the skewness and
kurtosis of X : Then they are defined by

SX ¼
M3

s3
X

¼
E½ðx � mX Þ

3	
s3

X

; ð10Þ

and

kX ¼
M4

s4
X

¼
E½ðx � mX Þ

4	
s4

X

; ð11Þ

where sX is the standard deviation of X :
It is obvious from Eq. (7) that the moments of odd order are all zero if the PDF fX ðxÞ is even.

For example, the commonly used Gaussian or normal distribution has the skewness SX ¼ 0:0 and
the kurtosis kX ¼ 3:0: In fact, the two moments can be used as indices to test how far a random
variable deviates from Gaussian normal. In addition, the kurtosis coefficient can be applied to
classify the system non-linearities if the systems are non-memory [16]. For that reason, these two
statistical moments draw much less attention in real applications even within cases of the
Gaussian distribution. However, let the random signal X be first rectified to one-side in such a
way that

Y ðtÞ ¼ jX ðtÞj: ð12Þ
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Then the value of the skewness will definitely be non-zero, while the kurtosis is the same. For
example, the first rectified moment

mY ¼
1

N

XN

i¼1

jxij; ð13Þ

which will never be zero unless all xi are zero. As the calculation shows [17], SY ¼ 1:6 and
kY ¼ kX ¼ 3:0 for the Gaussian distribution. And thus depending on the signal amplitudes,
sY ;SY and kY in addition to mY ; are chosen as the input signals for the current study.

4. Experimental setups

Fig. 2 shows the block diagram of the experimental process. The acoustic signals of a rotary
disk were generated from the PBS-5000 rotor kit in the lab. The phenomenon signals of both
normal and malfunction were purposely generated depending on the needs of analysis by means
of this rotor kit. For example, a known extra mass is put on a well-balanced disk to simulate the
mass unbalance of the machine. Moreover, the pre-processed signal data are randomly and evenly
divided into two sets. One set is for the system training, while the other one is for diagnosis testing
of the ANN. Refer to Fig. 2 for details.

The microphone that is installed close to one of the two bearings detects the acoustic signal
generated from the machine. Meanwhile, the vibrations are acquired by and four non-contact
proximity probes installed close to the two supporting bearings. For comparison, refer to Fig. 3.
Both acoustic and vibration signals appear as a voltage and are adequately amplified before
processing in the computer. In addition, in order to filter the DC voltage resulting from the initial
installation of the probes, a second order Butter-Worth filter was added prior to the PCL-818H A/
D card for vibration signals. The high-pass frequency was set at 5Hz to get rid of the DC voltage
while the lower-pass filter is at 1 kHz to filter those useless high-frequency signals and noise. The
A/D card supplied by Advent Tech. Co. has 16 channels with the maximum sample rate of
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10MHz. Therefore, it is more than enough to acquire both the low-frequency vibration and
acoustic signals of high frequencies. The signals collected from the A/D card are then digitized
and stored in the PC for the next ANN training as well as testing.

The perturbation rotor kit is driven by a 3f; 90W AC motor. The shaft was made from high
carbon steel with 9.525mm ð3

8
inÞ diameter and 276 g and coupled with the motor by a flexible

coupling. The relative locations of the proximity probes and test disk (mass 411 g) are shown in
Fig. 3 in addition to the microphone. Two proximity probes that were installed in the vertical and
horizontal directions, 90� apart at the frame on the relative plane (RP) are shown in Fig. 3(b). The
scale factor of the probes is 200mv/mil up to 10 kHz with accuracy 74%.

Besides, there is an additional probe, or the so-called key phasor (KP), mounted on the RP to
lock an impulsive signal in each shaft revolution. The signal from this KP probe will get the right
rpm for the diagnosis system. See Fig. 4 for details of the experimental setup. Note that there are
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six (6) channels which have been connected during the experiment. They are: one for the KP, one
for the microphone, and the two proximity probes for each bearing.

5. Experiments

The main concern of the present study is the signals acquired from the microphone, even
though there are four other proximity probes. The maximum sampling rate of the microphone
was set to 8196Hz, while only those signals below approximately 4 kHz were of interest. The total
sampling time was set to 1.2 s. Thus, the frequency resolution is 1Hz. In addition, the averaging
method was applied to reduce the random noise. Both normal and abnormal signals were
recorded for analysis. In addition, the signals were taken with various rotation speeds. For each
speed, 20 samples were taken for processing later.

Anticipating for both training and test needs, the acquired acoustic signals were processed into
those in the power spectra (P) and rectified statistical moments (S) introduced in Section 3. In
addition, since the configuration of the rotor kit bearing has seven (7) balls inside the inner cage,
some signals that are in fractions and multiples of seven are of main interest:
0:5o;o; 2o; 3o; 4o; 5o; 6o; and 3:5o; 7o; 14o and 21o: Here, o stands for the speed of the disk.
It can be either in Hz or in RPM. Nevertheless, there are 11 intensity feature inputs in the
frequency domain to be fed into the ANN. More then that, there are four features in S including
mY ; sY ; SY ; and kY :

Since the acoustic signals are recorded from the microphone, one crucial factor that affects the
quality of the ANN is the distance. That is, the effect of the distance between the microphone and
the acoustic source, shown by ‘d ’ in Fig. 3(a), has to be successfully eliminated, otherwise, the
input would be meaningless since the sound intensity attenuates as the distance increases. In order
to normalize those acoustic signals, a d-normalization was designed for readers who are into
speech synthesis may be familiar with the loudness or acoustic volume of speech, e.g., [16].
Analogous to that definition of the acoustic volume function, the row acoustic signals can be
normalized by dividing by mY ; or, referring to Fig. 4. Let I � ðf Þ be the sound intensity power at a
frequency f : Then the d-normalization was defined by

Iðf Þ ¼
I � ðf Þ
mY

; ð14Þ

where mY has been defined in Eq. (13). Fig. 5 compares a typical acoustic power spectrum before
and after the d-normalization. The figure shows that the distance between the microphone and the
acoustic source has been successfully reduced to a very low level.

Furthermore, the output signals are normalized in another way. That is, let y� ¼
fy�

1; y
�
2;y; y�rg

T be the output vector before normalization. Then it can be normalized by its
one-norm by

y ¼
y�

jjy � jj1
¼

fy�1; y
�
2;y; y�

2g
TPr

i¼1 jy
�
i j

: ð15Þ

The normalized output vector y is then compared with the target vector T in the ANN training.
Besides, in the present study, the length of the output vector y is 4, i.e., r ¼ 4:
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6. Results and discussions

As mentioned earlier, the ANN parameters are very important and affect its performance [2–7].
For example, the momentum factor (o) was set to a fixed value of 0.9 in addition to Nin: NH :
r ¼ 16:10:4, and, the maximum iterations was 2000 in case emax ¼ 0:002 (0.2%) could not be
reached. In addition, the learning rate constant of 0.3 was selected for the current ANN. Fig. 6
shows the residual error during the network training. Note that the levels of emax are too small to
be seen in the figure.

The unbalance was established by adding 0.25% extra mass to the disk, i.e., Dm=m ¼ 0:7=276 g,
during the experiments. For reasons of comparison, the signals were acquired both by using the
proximity probes and the microphone. Figs. 7 and 8 show the two signals recorded from the two
different sensors for rotation speed o ¼ 60Hz and at the normal condition Dm ¼ 0: Despite the
intensities of the two signals in these two plots, they are actually consistent, especially at 1o:
However, the acoustic signals seem to have more harmonic peaks than that of proximity probes.
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For instance, there is the highest peak at 3o (180Hz) in Fig. 7, but not in Fig. 8. Note, the
proximity probes were to measure the amount of the axis oscillations including shaft bow, while
the microphone was put close the right bearing. In other words, the latter may further include
defects of the bearings. That may be the reason the latter has more peaks in Fig. 7. Nevertheless,
the acoustic signals seem to have more information than the proximity probes.

Fig. 9 shows the acoustic signals in the case where unbalance Dm ¼ 0:7 g. As can be clearly seen
by comparing Figs. 9 and 7, the extra unbalance mass creates much larger acoustic power right at
1o: However, as one can see from Fig. 9 the acoustic intensity at 3o did not increase
proportionally. Instead, it became much small relatively to that of the power unbalance mass at
1o: Note that the approximate maximum level of normal condition has also been plotted in Fig. 9
for comparison.

For convenience of expression, the braces ({ � � }) denote the rotational speeds inside the braces,
while those in the brackets ([ � � ]) are the speed ranges analogous to math symbols. For example,
‘{30, 50} Hz’ means the speeds at 30 and 50Hz.
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Under the constant speed test, the ANN was trained with acoustic signals acquired in [30,
100]Hz under the same unbalance condition. After the ANN converged below the acceptable
error level, it was tested by signals of o7Do; i.e., the test signals were generated in the vicinity of
the training speed. By doing so, the ANN may be more flexible and robust in real application. The
results are shown in Table 1. With Do ¼ 2:5 Hz; the ANN is able to 100% classify the cases of
normal and abnormal, with the exception at o ¼ 40Hz.

It can be seen from Table 1 that the ANN cannot identify the machine condition at rotational
speed at o ¼ 40Hz. As has been shown in [17], the rotor disk was purposely set to process the first
natural frequency approximately at 80Hz. On the other hand, the configuration of the ball
bearing is depicted in Fig. 10. Assuming there exist no slipping at the ball and fixed the outer ring,
one has no difficulty in finding the velocity of the inner ring as [9]

Vin ¼ o � Rin; ð16Þ

while for the outer ring Vout ¼ 0; refer to Fig. 10; and, the ball center has velocity Vb;

Vb ¼ 1
2
o � Rin: ð17Þ

In addition, the retaining cage which locates at RB ¼ ðRin þ RoutÞ=2; has the same velocity as the
balls. In fact the cage acts in such a way as to keep all rolling balls in the same motion. Thus, the

ARTICLE IN PRESS

Table 1

Constant speed tests in [30, 100] Hz

Disk rpm (Hz) 30 40 50 60

Train/test samples 40/40 40/40 40/40 40/40

Results (%) 100 90 100 100

Disk rpm (Hz) 70 80 90 100

Train/test samples 40/40 40/40 40/40 40/40

Results (%) 100 100 100 100

0 50 100 150 200 250 300
0

0.003

0.006

0.009

0.012

0.015

0.018

Hz

In
te

ns
ity

Max.
(normal signal)
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angular velocity of the rolling set, including the balls and the cage, is

oB ¼
Vb

RB

¼
1
2
o � Rin

1
2ðRin þ RoutÞ

¼
Rin

Rin þ Rout

� �
o: ð18Þ

Eq. (18) actually implies that the rolling sets of the rotor kit generate signals at a frequency less
than and close to o=2 if the shaft rotates with the angular velocity of o:

In addition, it is clear that there exist quadratic non-linearities in the rotor-disk system, e.g.,
[18]. As a consequence, the energy excited at o ¼ 40Hz flows into 2o; which is 80Hz, as shown in
Fig. 11(a) and (b). This phenomenon has been known and classified as internal resonance [19,20].
In other words, if in non-linear system natural frequencies satisfy oi ¼ 2oj; for some i and j; then
the system energy may flow forth back and between these two modes. As one can read by
comparing Fig. 11(a) and (b), such energy leaks to 2o (80Hz) happen at both unbalance and
normal conditions. As a result, the ANN can hardly classify the difference between normal and
abnormal condition at this speed.

Similarly, in the case where o ¼ 80Hz is excited, the system energy again flows to 40Hz too.
However, the results from Table 1 show that the ANN can successfully identify the signals at this
speed, even if the speed is very close to the disk resonance. The main reason stems from the fact
that the training set of the ANN has included signals of that particular non-linear phenomenon.
Moreover, the signals of the unbalance mass at o ¼ 80Hz are so strong that the ANN can easily
identify the features.

Fig. 12 shows the same acoustic power as in the case of Fig. 11(a). The energy flows into 2o is
very clear, that is, the same as in Fig. 11(a), though all other multiples of o include more noises. In
addition, there exist some other unknown peaks in the spectra. It is the authors’ opinion that these
strange peaks mainly stem from the imperfectness of ball bearings or its cage.
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7. Conclusions

A diagnosis expert system for identifying the mass unbalance of rotating machines was
developed and tested in the present study. The expert system adopts the backward propagation
neural network as the inference mechanism. The main feature inputs are extracted from the
signals that are acquired by a microphone. The acoustic signals are better than the traditional
vibrations because of the mobility of the sensors. However, the distance between the microphone
and the acoustic source is the main factor that affects the quality of the input feature. This
problem can be overcome by the so-called d-normalization before putting into the system. The ‘d-
normalization’ is actually similar to the normalization based on the loudness or the acoustic
volume. Nevertheless, the experimental study showed that the d-normalization could successfully
minimize the effect of the source distance.

In addition, the acoustic power spectra together with rectified statistical moments were designed
as the major input representations for the expert system. Both the skewness and kurtosis
coefficients are sensitive to the change of rotating speeds or signal amplitudes. And, thus they can
provide additional information as long as the malfunctional signal deviates from the normal
one. Moreover, the first moment of the rectified acoustic signals can be used as the base of
d-normalization.

The system was further verified by many tests under different considerations. It has been found
that the ANN system is good except that there exists a special phenomenon like resonance.
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